

Domain Generalization via Nuclear Norm Regularization

Zhenmei Shi*, Yifei Ming*, Ying Fan*, Frederic Sala, Yingyu Liang

Experiment - Real Dataset

fficeHome		1011 11 11 11 11 11 11 11	- Destruct
incerionie	TerraInc	DomainNet	Average
66.3 ± 0.1	42.2 ± 1.6	23.4 ± 9.5	58.8
50.4 ± 0.3	44.0 ± 0.7	34.0 ± 0.1	60.3
66.0 ± 0.7	43.2 ± 1.1	33.3 ± 0.2	60.7
64.3 ± 2.2	47.6 ± 0.8	33.9 ± 2.8	61.6
54.8 ± 0.3	45.5 ± 0.3	35.5 ± 0.2	61.7
66.4 ± 0.6	46.4 ± 0.6	33.6 ± 2.9	61.9
55.8 ± 1.3	45.8 ± 1.6	38.3 ± 0.3	62.0
55.6 ± 0.4	44.6 ± 0.3	37.2 ± 0.6	62.0
55.9 ± 0.6	46.7 ± 0.5	38.3 ± 0.1	62.6
55.5 ± 0.9	46.6 ± 1.0	38.9 ± 0.5	62.7
66.4 ± 0.5	45.6 ± 1.2	40.6 ± 0.1	62.9
58.1 ± 0.3	47.9 ± 0.8	39.2 ± 0.1	63.4
66.8 ± 0.6	47.7 ± 0.9	41.2 ± 0.1	63.6
68.6 ± 0.4	45.1 ± 1.3	42.7 ± 0.2	63.9
57.8 ± 0.1	47.4 ± 1.6	41.7 ± 0.0	64.0
68.1 ± 0.1	$\textbf{48.6} \pm \textbf{1.0}$	40.3 ± 0.1	64.2
57.9 ± 0.7	47.0 ± 0.3	41.5 ± 0.2	64.2
58.7 ± 0.3	47.6 ± 1.0	41.5 ± 0.1	64.5
59.6 ± 0.1	43.3 ± 0.7	44.3 ± 0.0	64.5
59.2 ± 0.4	48.1 ± 1.4		65.1
70.5 ± 0.4	50.4 ± 1.1	44.3 ± 0.2	65.9
6.5 ± 0.3	46.1 ± 1.8	40.9 ± 0.1	63.3
58.1 ± 0.1	$\textbf{49.6} \pm 0.6$	43.4 ± 0.1	65.0
70.6 ± 0.2	50.0 ± 0.3	46.5 ± 0.1	66.9
71.3 ± 0.3	52.2 \pm 0.3	47.1 ± 0.1	67.8

NU is broadly applicable. Mixup-NU SWAD-NU

SWAD: Domain Generalization by Seeking Flat Minima

NU is effective.

self.featurizer(x) # get feature embedding loss = F.cross_entropy(self.classifier(f), y) # get classification loss _,s,_ = torch.svd(f) # singular value decomposition loss += self.lambda * torch.sum(s) # add nuclear norm regularization NU is easy to implement.

Theoretical Analysis

Theorem (Informal; Linear data and linear model) • The optimal solution for the **ERM-NU** has **high** OOD test accuracy. • The optimal solution for the **ERM** with/without weight decay has **low**

ERM will encode **all** features correlated with labels, even when the correlation is weak

3. When OOD has different spurious feature distributions => ERM fails (random guessing). 4. However, ERM-NU will only encode features that have a large correlation with labels

Take Home Message

Nuclear Norm Regularization is an (1) effective, (2) broadly applicable, (3) easy to implement